Tuesday 29 January 2013

How Working Out Changes the Morphology of Your Body Fat - Why This Explains that Intensity and Explosiveness Hold the Key to Getting and Staying Lean

How Working Out Changes the Morphology of Your Body Fat and Why This Explains that Intensity and Explosiveness Hold the Key to Getting and Staying Lean, Fit and Healthy - SuppVersity: Nutrition and Exercise Science for Everyone


So far for the stuff that will make you look smart, when you parrot it in front of your gymbros. In order to not just look smart, but also be smart -- and in this case train smart -- you will yet also have to know the implications of these revelations and this is exactly what the rest of this article is going to deal with:

  • Making HIIT a Hit! learn how in the SuppVersity  Special (read more) and use it to get lean & healthy and, more importantly, stay lean and healthy!
    HIF-1α <> PPAR-γ <> adipocyte crosstalk - an(-other) argument for high intensity exercise: Since the HIF-1α response to a given training stimulus decreases once the body has adapted to the stressor by increasing its exercise capacity (Lundby. 2005). The crosstalk between HIF-1α, PPAR-γ, and your fat cells provide another reason to work out in the higher range of the VO2max continuum and to never neglect the imperative of constant progression (even if it's only a progression of 0.1km/h during your sprints on the treadmill - adaptation means stagnation, if you don't raise the bar appropriately)
  • Wnt10B response to stretching - an argument for heavy eccentrics and/or statics to revamp your body (less fat, more muscle!): The findings of Akimoto et al. point towards the existence of another rather strength-training specific contributer to the fat loss and leanness promoting effects of exercise - the stretch-induced activation of the wingless-type (WNT) MMV integration site family member WNT10b, the quasi cousin of an upstream mediator of HIF-1α (Akimoto. 2005). The activation of the WTNs does actually get down to the root of the trouble and will not just inhibit the formation of new fat cells from pre-adipocytes, it will also divert the mesenchymal and not yet specialized stem cells to turn into osteroblasts (bone) or myoblasts (muscle). In fact, research has shown that WNT signaling is a major contributer to both the recruitment of new muscle progenitor cells from the aforementioned pool of yet unspecific stem cells and skeletal muscle hypertrophy (Polesskaya. 2005; Armstrong. 2005).
  • You will also benefit from integrating plyometrics into your existing routine - build the Jack of All Traits Workout
    The greater WNT response to power vs. strength training points towards the superiority of a plyometrics to get and stay lea: In view of the results of Leal et al., who report a 3x greater WNT gene response to power compared to strength training in their 2011 paper on the effect of different resistance-training regimens on the WNT-signaling pathway, plyometrics, which have way more in common with the power training protocol in the Leal study (40% lighter weights; faster, explosive contractions) than whatever powerlifting routine you may have been thinking of, should be a superior means to stay lean (Leal. 2011)
  • Exercise restores your body's fat gauge: If you wanted to pointedly summarize the exercise induced reductions in leptin expression, the associated restoration of leptin sensitivity in the obese, and the increased adiponectin release relative to the increase in fat cell diameter, you could actually say that exercise restores your body's fat gauge. It allows your brain and the other organs to see how much body fat you still got and have them react appropriately. Funnily this is also why you body will, clever as is is, pull the emergency break, whenever your body fat levels become too low (cf. "The Athlete Triad Series").
Did you know that 10% of the fat cells have to be renewed every year? I know this is speculative and we are not talking about ZERO adipocyte maturation here, but what do you think will happen when a fat cell is due and you just hit the off-switch on adipocyte maturation?
A final word of caution: I am well aware that some of you may take this article as justification for training themselves into the ground. So please(!) keep in mind that hypoxia induced WNT10 and stretch induced WNT10b signaling, as well as most of the other fancy stuff you have learned about in the previous paragraphs are stress responses that require adequate recovery periods for the metabolic and growth responses they induce to take effect. Sleep, Eat, Train, Rest, Sleep, Eat, Train, Rest, Sleep, Eat... do you notice something? Yeah, right that's a 3/1 ratio of non-stressful occupations, namely sleeping, eating and resting to a single stressor, i.e. training. In other words, 25% of your result are "made" in the gym, 75% in bed (don't make it too stressful there ;-), in the kitchen and even, when you spend time with friends and family or simply sprawl out on the couch. Think of that, when you're designing your next training routine.

References:
  • Armstrong DD, Esser KA. Wnt/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol. 2005 Oct;289(4):C853-9. Epub 2005 May 11.
  • Akimoto T, Ushida T, Miyaki S, Akaogi H, Tsuchiya K, Yan Z, Williams RS, Tateishi T. Mechanical stretch inhibits myoblast-to-adipocyte differentiation through Wnt signal-ing. Biochem Biophys Res Commun. 2005; 329: 381-385
  • Izawa T, Ogasawara J, Sakurai T, Nomura S, Kizaji T, Ohno H. Recent advances in the adaptations of adipose tissue to physical activity: Morphology and adipose tissue cellularity. J Phys Fitness Sports Med. 2013:1(3): 381-387. 
  • Leal ML, Lamas L, Aoki MS, Ugrinowitsch C, Ramos MS,  Tricoli V, Moriscot AS. Effect of different resistance-training regimens on the WNT-signaling pathway. Eur J Appl  Physiol. 2011; 111: 2535-2545
  • Miyazaki S, Izawa T, Ogasawara JE, Sakurai T, Nomura S, Kizaki T, Ohno H, Komabayashi T.  Effect of exercise training on adipocyte-size-dependent expression of leptin and adiponectin. Life Sci. 2010; 86: 691-698.
  • Lundby C, Gassmann M, Pilegaard H. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions. Eur J Appl Physiol. 2006 Mar;96(4):363-9. Epub 2005 Nov 12.
  • Polesskaya A, Seale P, Rudnicki MA. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell. 2003 Jun 27;113(7):841-52.
  • Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R, Janssen I. Reduction in obesity and related comor-bid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med. 2000; 133: 92-103.
  • Sakurai T, Endo S, Hatano D, Ogasawara J, Kizaki T, Oh-ishi S, Izawa T, Ishida H, Ohno H. Effects of exercise training on adipogenesis of stromal-vascular fraction cells in rat epididymal white adipose tissue. Acta Physiol (Oxf). 2010; 200: 325-338.
  • Stallknecht B. 2004. Influence of physical training on adipose tissue metabolism -- with special focus on effects of insulin and epinephrine. Dan Med Bull. 2004; 51: 1-33.
  • Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond). 2009 Jan;33(1):54-66.